HPAS Maths Optional PYQs: Laplace Transforms
For Solutions:
CLICK HERE
On that page, you will find year-wise and question-wise solutions.
Based on the sources provided (HPAS Maths Optional Question Papers 2014–2024), here is a compilation of all questions related to the Laplace Transform topic, including direct transformation, inverse transformation, solving differential equations, and application theorems.
HPAS 2024 Laplace Transform Questions
Question 1(c): Find the Laplace transform of: \(\mathbf{\frac{1}{t} \int_{0}^{t} e^{u} \sin u \,du}\).
Question 7(a): If \( C(t) = \int_{t}^{\infty} \frac{\cos x}{x} dx \), show that the Laplace transform of \(C(t)\) is \(\mathbf{ \log\frac{\sqrt{s^2+1}}{s} }\).
HPAS 2023 Laplace Transform Questions
Question 1(d): Determine the inverse Laplace Transform of the function: \(\mathbf{ \tan^{-1}\left(\frac{2}{s^2}\right) }\).
HPAS 2021 Laplace Transform Questions
Question 1(e): Determine the inverse Laplace transform of: \(\mathbf{ \log\frac{s+c}{s+d} }\), where \(c\) and \(d\) are constants.
Question 7(a): Determine the inverse Laplace transform of: \(\mathbf{ \frac{1}{s^2 – e^{-as}} }\).
Question 7(b): Using the concept of Laplace Transform, find the solution of the initial value problem: \(\mathbf{ t\frac{d^2y}{dt^2} + 2t\frac{dy}{dt} + 2y = 2 }\) with \(y(0) = 1\), and \(y'(0)\) is arbitrary.
HPAS 2020 Laplace Transform Questions
Question 6(b): Solve the following initial value problem using the Laplace transform: \(\mathbf{ \frac{d^2y}{dx^2} – 3\frac{dy}{dx} – 4y = x^2 }\) with \(y(0)=2\) and \(y'(0)=1\).
Question 6(c): Find the Laplace transform of the following periodic function \(f(x)\) with period \(2\pi\):
$$ \mathbf{ f(x) = \begin{cases} x & , \ 0 \le x \le \pi \\ 2\pi – x & , \ \pi \le x \le 2\pi \end{cases} } $$
HPAS 2019 Laplace Transform Questions
Question 1(c): Obtain the Laplace transform of the function \(\mathbf{ f(t) = e^{-3t}u(t-2) }\).
Question 6(a): Obtain the inverse Laplace Transform of \(\mathbf{ f(s) = \log\frac{s+1}{s-1} }\).
Question 6(b): Find the Laplace transform of the following periodic function \(f(t)\) with period \(2c\):
$$ \mathbf{ f(t) = \begin{cases} t & , \ 0 < t < c \\ 2c - t & , \ c < t < 2c \end{cases} } $$
Question 6(c): Solve the following Initial Value Problem using the Laplace transform: \(\mathbf{ x” + 2x’ + 5x = e^{-t}\sin t }\) with initial conditions \(x(0)=0\) and \(x'(0)=1\).
HPAS 2018 Laplace Transform Questions
Question 3(b): Find the value of \(\mathbf{L\{x^{7/2}\}}\).
HPAS 2017 Laplace Transform Questions
Question 1(c): Evaluate the Laplace transform of the function \(\mathbf{f(x) = (x+2)^2 e^x}\).
Question 7(a): Show that: \(\mathbf{ L\left\{ \int_{0}^{x} \frac{1-e^{-u}}{u} du \right\}(p) = \frac{1}{p}\log\left(1+\frac{1}{p}\right) }\).
Question 7(b): Apply the convolution theorem to find: \(\mathbf{ L^{-1}\left\{ \frac{p^2}{(p^2+a^2)^2} \right\}(x) }\).
HPAS 2016 Laplace Transform Questions
Question 1(c): Determine the inverse Laplace transform of \(\mathbf{\frac{e^{-1/s}}{s}}\).
HPAS 2015 Laplace Transform Questions
Question 7(a): Find the Laplace transform of \(\mathbf{\sin\sqrt{t}}\). Also show that: \(\mathbf{ L\left\{\frac{\cos\sqrt{t}}{\sqrt{t}}\right\}=\sqrt{\frac{\pi}{p}}\cdot e^{-\frac{1}{4p}} }\).
HPAS 2014 Laplace Transform Questions
Question 7(a): If \( L_{n}(x)=\frac{e^{x}}{n!}\cdot\frac{d^{n}}{dx^{n}}(e^{-x}\cdot x^{n}) \), then find Laplace transform \(\mathbf{L\{L_{n}(x); p\}}\), with \(p>1\).
